EEG phase patterns reflect the selectivity of neural firing.

نویسندگان

  • Benedict Shien Wei Ng
  • Nikos K Logothetis
  • Christoph Kayser
چکیده

Oscillations are pervasive in encephalographic signals and supposedly reflect cognitive processes and sensory representations. While the relation between oscillation amplitude (power) and sensory-cognitive variables has been extensively studied, recent work reveals that the dynamic oscillation signature (phase pattern) can carry information about such processes to a greater degree than amplitude. To elucidate the neural correlates of oscillatory phase patterns, we compared the stimulus selectivity of neural firing rates and auditory-driven electroencephalogram (EEG) oscillations. We employed the same naturalistic sound stimuli in 2 experiments, one recording scalp EEGs in humans and one recording intracortical local field potentials (LFPs) and single neurons in macaque auditory cortex. Using stimulus decoding techniques, we show that stimulus selective firing patterns imprint on the phase rather than the amplitude of slow (theta band) oscillations in LFPs and EEG. In particular, we find that stimuli which can be discriminated by firing rates can also be discriminated by phase patterns but not by oscillation amplitude and that stimulus-specific phase patterns also persist in the absence of increases of oscillation power. These findings support a neural basis for stimulus selective and entrained EEG phase patterns and reveal a level of interrelation between encephalographic signals and neural firing beyond simple amplitude covariations in both signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns

Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...

متن کامل

The firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat

Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal ‎horn is well described, the midbrain neural basis underlying each phase of behavior in ‎formalin test has not been clarified. The present study was designed to investigate the nucleus ‎cuneiformis (CnF)‎‏ ‏neuronal responses during two phases after subcutaneous injection of ‎formalin into the hind paw...

متن کامل

Background firing rates of orbitofrontal neurons reflect specific characteristics of operant sessions and modulate phasic responses to reward-associated cues and behavior.

The orbitofrontal cortex plays an important role in the ability of animals to adjust their behavior in response to behavioral outcomes. Multiple studies have demonstrated that responses of orbitofrontal neurons during operant sessions reflect the outcome of particular behaviors. These studies have focused on rapid neural responses to short-duration events such as instrumental behavior and rewar...

متن کامل

Functional interactions in hierarchically organized neural networks studied with spatiotemporal firing patterns and phase-coupling frequencies.

A scalable hardware/software hybrid module--called Ubidule--endowed with bio-inspired ontogenetic and epigenetic features is configured to run a neural networks simulation with developmental and evolvable capabilities. We simulated the activity of hierarchically organized spiking neural networks characterized by an initial developmental phase featuring cell death followed by spike timing depend...

متن کامل

Phase of low-frequency cortical oscillations encodes sound edges and sound-specific structure

Submission No: 1763 Authors: Bruno Giordano, Stefano Panzeri, Robin Ince, Alain de Cheveigné, Joachim Gross, Pascal Belin Institutions: Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France Introduction: Natural sounds are rich in time-varying acoustical features. So far, little progress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cerebral cortex

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2013